Big Data Analytics and Healthcare

Anup Kumar, Professor and Director of MINDS Lab
Computer Engineering and Computer Science Department
University of Louisville
Road Map

• *Introduction*

• Data Sources
 – Structured EHR data
 – Unstructured EHR data

• Data Analytics Approaches
 • Processing of Structured data
 • Processing of Unstructured data

• Example Applications

• Conclusions
Big Data Applications

• Advertising and marketing
 – Customer shopping patterns
 – Response to promotional campaign
• Manufacturing
 – Maintenance of machine health
• Social Media
 – Browsing and sentiment analysis
 – Impact on buying patterns
• Email
 – Communication and interaction patterns
 – Influencing the product perception
• Government data
 – Efficient process management
Big Data Applications (cont’d)

• Stock Market
 – Stock performance prediction

• Healthcare Management
 – Patient health monitoring
 – Impact of preventive care

• Financial Institutions
 – Fraud detection and mitigation

• Weather
 – Prediction
 – Impact analysis and better disaster management
Why Big Data Analytics Now?

• Volume
 – Data generated by 2020 will be in Zettabytes \((10^{21})\)
 – Soon after that the measure will be Yottabyte \((10^{24})\) and Brontabyte \((10^{27})\)

• Variety
 – Structured (transactional data)
 – Unstructured (image, video and text data)

• Velocity
 – Rate of data generation
 – Increase in the ability to process data

• Variability/Veracity
 – Trustworthiness of data
 – Quality of data
Big Data Analytics: Benefits

• Getting to know your patient better
 – Targeted medicine
 – Accurate diagnosis
 – Predicting disease onset
• Saving money
 – Fraud detection in medical industry
 – Risk Management
 – Lower cost and better outcomes
• Real-time decision making
 – Sensor data analysis
 – Influence of social sentiment on patient health
Data Scientist: A Challenging Combination of Backgrounds

- Math and Statistics Background
- Domain Expertise
- Programming Skills
Big Data Analytics

- Big Data Analytics = Big Data + Advanced Analytics
- Advanced Analytics includes:
 - Association Rules
 - Classification and decision trees
 - Text analytics
 - Clustering
 - Regression
 - Machine learning
 - Etc....
- Deployments of Analytics
 - MapReduced / Hadoop Based Deployment
 - In-Database Deployment
- Data Analytics is applicable to any size of data
Road Map

• Introduction
• **Data Sources**
 – Structured EHR data
 – Unstructured EHR data
• Data Analytics Approaches
 • Processing of Structured data
 • Processing of Unstructured data
• Example Applications
• Conclusions
Healthcare Data Types

- EHR
- Public Health
- Social Behavioral
- Public Health
Healthcare Data

• Billing Data
 – International Classification of Diseases (ICD)

• Lab results
 – Logical Observation Identifiers Names and Codes (LOINC)

• Medication
 – National Drug Code (NDC) by Food and Drug Administration (FDA)
Healthcare Data (Cont’d)

• Clinical notes
 – Unstructured text data

• Image Data
 – Unstructured data

• Social Interaction data
 – Unstructured data
Heritage Health Prize

Improve Healthcare, Win $3,000,000.

Identify patients who will be admitted to a hospital within the next year using historical claims data. (Enter by 06:59:59 UTC Oct 4 2012)
GE Head Health Challenge
GE Challenge I

Challenge I Award

GE and the NFL will be awarding up to $10 million for two types of solutions: Algorithms and Analytical Tools, and Biomarkers and other technologies.
Road Map

- Introduction
- Data Sources
 - Structured EHR data
 - Unstructured EHR data
- Data Analytics Approaches
 - Processing of Structured data
 - Processing of Unstructured data
- Example Applications
- Conclusions
Analytic Platform

Structured EHR

Unstructured EHR

Patients / Context Feature Selection

Clustering

Classification

Recommendation

MINDS
University Of Louisville
CECS Department
Mobile Information Networks
and Distributed Systems Lab
Types of Data Analysis

• Descriptive Analytics (traditional Business Intelligence):
 – Specifies the data characteristics
 – Also known as unsupervised learning
 • How to describe the system?
 • What happened in the system and when?
 • What are the parameters in the systems?
 • What is the impact of a parameter on the system?
 • Is there any co-relation between the parameters?

• Predictive Analytics: Uses data mining and predictive modeling
 – Also know as supervised learning
 • What are the future trends?
 • What is the decision based on past history?
 • Perform what if analysis.
Implementation Options

- In-Database Analytics
- Distributed Analytics
 - Cluster and cloud computing based
 - Hadoop / MapReduce based
In-Database Analytics

• Allows analytic computation to be carried out in the database
 – Uses SQL and
 – SQL extensions

• Advantages
 – Computation is close to data and does not require data movement
 – Analytic centralization may allow easy security, data and version management
 – Client access to in-database analytics is easy
 – Higher analytics efficiency, easy usability, better database manageability

• Disadvantages
 – Vendor dependent
 – Limited data type support in databases
 • Cannot run location dependent analytics or Text analytics
 – Cost of analytics
Distributed Analytics

• Motivation
 – Large data size
 – Complex computation logic
 – Real time processing requirement
 – Cheaper hardware
 – Larger and faster storage space

• Challenges
 – How to divide and distribute data?
 – How to divide the algorithm?
 – How to manage distributed resources?

• Limitations
 – Many problems are not suitable for distributed computing
 • Sequential algorithms
 • For example, computing Fibonacci sequence
Cluster and Cloud Computing

Benefits

• Availability of large computing resource
• Huge storage space availability
• Easy distribution of data and computation logic
• Availability of more flexible distributed programming paradigm
 – MapReduce
• Effective implementation of MapReduce
 – Hadoop
 – R-Hadoop
Hadoop Based Analytics

• Allows analytics to be carried out on any type of data store
• Provides standard framework for computation
 – On cloud environment
 – On in-premises network
• Advantages
 – Vendor independent
 – Allows any type of analytics to be carried out
 – Provides flexible and adaptable architecture for implementation
• Disadvantages
 – Complex implementation
MapReduce

• Allows use of large computational resources
 – Inter cluster communication is managed by MapReduce

• MapReduce architecture supports
 – Data and task distribution
 – Fault monitoring
 – Task and data replication
 – Simple programming model

• Limitations of MapReduce
 – Cannot solve all the problems
MapReduce: A Pragmatic Approach

• It can solve many Big Data problems
 – Data filtering
 – Statistics and aggregation
 – Graph analytics
 – Decision Tree and classification
 – Clustering and recommendations
• Practical Distributed API
 – Easier to understand and use
• Higher level APIs exist
 – To reduce the complexity of programming
 – Ability to schedule multi-stage jobs
Phases in Hadoop Processing

- Data Processing with Hadoop goes through three phases
 - Map Phase
 - Processes the data and generate <key, Value> pairs
 - Shuffle Phase
 - Moves the data <key, value> pairs to appropriate processing node for reduction
 - Reduce Phase
 - Processes the data <key, value> pairs to generate final output
- Hadoop can use multiple machines for each phase
Association Rule Example

- In order to compute support
 - The number of times each product and its combinations occur in the data has to be calculated
- The original transaction file format
 - 1, milk, bread
 - 2, bread, butter
 - 3, milk, bread, butter
 - 4, milk

<table>
<thead>
<tr>
<th>Transaction ID</th>
<th>Milk (M)</th>
<th>Bread (B)</th>
<th>Butter (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Association Rule MapReduce

Input Splitting Mapping Shuffling Reducing

M B MB
B T BT
M B T MB MT BT MBT
M

M B MB
B T BT
M B T MB MT BT MBT
M

B T BT

M,1 B,1 MB,1
B,1 T,1 BT,1
M,1 B,1 T,1 MB,1 BT,1
M,1 B,1 T,1 MB,1 BT,1 MT,1 MBT,1
M,1 B,1 T,1 MB,1 BT,1 MT,1 MBT,1

M,1 M,1 M,1
B,1 B,1 B,1
T,1 T,1
MB,1 MB,1
BT,1 BT,1
MT,1 MT,1
BMT,1

M,3 B,3 T,2 MB,2 BT,2 MT,2 BMT,1

M,1

M,1

M,1
Road Map

• Introduction
• Data Sources
 – Structured EHR data
 – Unstructured EHR data
• Data Analytics Approaches
 • *Processing of Structured data*
 • Processing of Unstructured data
• Example Applications
• Conclusions
Steps in Structured Data Analytics

- Step 1: Business domain analysis
- Step 2: Data exploration and investigation
- Step 3: Data preparation and cleaning
- Step 4: Model design and development
- Step 5: Model verification and testing
- Step 6: Analyze the output
Application for Recommendation Framework

- **Medicine**
 - Disease recommendation
 - Drug recommendation
 - Case based search

- **Marketing**
 - Cell phone companies for identifying users that may switch
 - Recommending books at Amazon
 - Recommending products on the web sites

- **Education**
 - Universities guiding students what courses to take
 - Conference organizers assigning papers to reviewers
• Recommender can use the following rule:
Road Map

• Introduction
• Data Sources
 – Structured EHR data
 – Unstructured EHR data
• Data Analytics Approaches
 • Processing of Structured data
 • Processing of Unstructured data
• Example Applications
• Conclusions
Challenges in Text Mining

- Each document text may contain large amounts of text
 - High dimensionality
 - Difficult to identify which part is important to a pattern
- Ambiguity of content due to language features
- Sematic issues
 - Words and phrases may not be semantically independent
 - May have subtle and complex relations between concepts in text
- Complexity of natural language processing
- Processing large training set
General Steps in Text Mining

• Text Splitting
 – Split text into bag of words using text tokenization
 – Disadvantage: often loses semantic meaning
• Text Preprocessing
 – Removal of numbers
 – Removal of punctuation marks
 – Text case conversion as needed
• Feature selection
 – Determine nGrams necessary
 – Stop word removal (can use pre-specified list or generic list)
 – Stemming (identify word by its root)
General Steps in Text Mining (Cont’d)

• Determining the weighting of individual words
 – Term Frequency-Inverse Document Frequency (TF-IDF)
• Creating a Term Document Matrix
 – Terms and frequency of each word in a document
 • Simple TD
 • TF-IDF
 • Latent Semantic Indexing matrix
Stop Words

- Most common words in English that do not contribute to classification, clustering or association are:
 - Articles – a, an, the
 - Conjunctions – and, or...
 - Prepositions – as, by, of ...
 - Pronouns – you, she, he, it ...
- Text documents are high-dimension data
 - Removal of stop words acts as technique for dimensionality reduction
- Other non-context related words can also be removed
Stemming

• The process for reducing inflected (or sometimes derived) words to their stem, base or root form
 – Typically achieved by removing – ing, - s, -er -ed etc.
 – For example: “mining”, “miner”, “mines”, “mined”
 – Stemmed word “mine”

• Common Algorithms are
 – Porter’s Algorithm
 – KSTEM Algorithm
 – Snowball Stemming
Steps in Association Mining

- Loading the data
- Text preprocessing (as needed)
 - Cleaning
 - Punctuation removal
 - Number removal
 - Stop word removal
 - Stemming
- Building term document matrix
- Finding frequent term association
Road Map

• Introduction
• Data Sources
 – Structured EHR data
 – Unstructured EHR data
• Data Analytics Approaches
 • Processing of Structured data
 • Processing of Unstructured data
• *Example Applications*
• Conclusions
Impact of Data Driven Features

Figure 2: AUC significantly improves as complementary data driven risk factors are added into existing knowledge based risk factors. A significant AUC increase occurs when we add first 50 data driven features.

Applications of Patient Similarity

- Heart Failure Prediction
- Likelihood of Diabetic onset
- Disease recommendation
- Medicine recommendation
Medical Imaging

Analysis Outcomes

• Modality Classification
• Image-based Retrieval
• Case-based Retrieval
Modality Classification

- Compound or multipane images
 - Radiology
 - Ultrasound
 - Magnetic Resonance
 - Computerized Tomography
 - X-Ray, 2D Radiography
 - Angiography
 - PET
 - Combined modalities in one image
 - Visible light photography
 - Dermatology, skin
 - Endoscopy
 - Other organs

- Diagnostic images
 - Printed signals, waves
 - Electromyography
 - Electrocardiography
 - Electroencephalography
 - Microscopy
 - Light microscopy
 - Electron microscopy
 - Transmission microscopy
 - Fluorescence microscopy
 - 3D reconstructions

- Generic biomedical illustrations
 - Tables and forms
 - Program listing
 - Statistical figures, graphs, charts
 - Screenshots
 - Flowcharts
 - System overviews
 - Gene sequence
 - Chromatography, Gel
 - Chemical structure
 - Mathematics, formulae
 - Non-clinical photos
 - Hand-drawn sketches
Image Query

• Image-based Retrieval
 – Given a query image and find the most similar images

• Case-based Retrieval
 – Given a case description, details of the symptoms, tests including images
 – Find similar cases including images with case descriptions
Genetic Data

• Human genome is composed of DNA with four building blocks
 – A, T, C, G
• Contains three billion pairs of bases of A, T, C, G
• Size of human genome is 3GB
Genome Wide Association Studies (GWAS)

- Identifying common genetic factors that influence health and diseases
- Compare DNA of patients with disease and similar people without disease
- Single nucleotide polymorphisms (SNPs) are DNA sequence variations that occurs when a single nucleotide in genome sequence differs between individuals
Epidemiology Data

• Source
 – Surveillance Epidemiology and End Results (SEER) Program at NIH

• Usage
 – Understanding the disparity in diseases related to race, age and gender
 – Information correlation with other data sources such as pollution, climate and socio economic
 – Can use predictive analysis for various disease trends
Social Networks for Patients

- PatientsLikeMe
 - Has more than 200,000 patients and is tracking more than 1,600 diseases
 - www.patientslikeme.com
Big Data Analytics: Barriers

- Cost of analytics
- Lack of skilled talent
- Difficult to architect a Big Data Solutions
- Big data scalability issues
- Limited capability of existing database analytics
- Tangible business justification
- Lack of understanding of Big Data benefits
Concluding Remarks

• Better diagnosis
• Better health care delivery
• Better value for patient, provider and payer
• Better innovation
• Better living