MPLS High Availability

IEEE CQR Workshop – London, June 7-9, 2006

Harmen van der Linde
Product Manager – MPLS
Cisco Systems, Inc.
Internet Technologies Division
havander@cisco.com
Topics

• MPLS overview
• High Availability (HA)
• HA mechanisms
• MPLS HA mechanisms
• Conclusions
MPLS Network Evolution

Technology Evolution
- **Efforts to solve IP over ATM Challenge**
 - IP + ATM Integration, Cell Switching Router, IP/Tag Switching, ... IETF Multi Protocol Label Switching Working Group

- **Technology components Invented & Implemented**
 - Traffic Engineering, MPLS VPNs, Fast Reroute, Any Transport over MPLS

- **Widespread MPLS Deployment**
 - Multi-Service Edge VPN with HA – SSO/NSF/FRR and MPLS + IPSec Integration, mVPN

Services Evolution
- **Traditional ATM and Frame Relay circuits Internet access, access VPNs**

- **1995-1996**

- **1996-2002**
 - Hub & Spoke and Full Mesh Layer 3 VPN Services with QoS Offerings – 2 to 5 Classes

- **Today**
 - Network Convergence – Many Services on converged MPLS core network
 - Triple-play service converge
Multi-Protocol Label Switching (MPLS)

- MPLS has become key infrastructure technology for Service Provider networks and new emerging broadband networks.
- MPLS architecture can be decomposed into two functional planes:
 - Control plane
 - Forwarding plane
- MPLS control plane:
 - Distributes labels and establishes label switched paths
 - Multiple control protocols; LDP, BGP, and RSVP-TE
- MPLS forwarding plane:
 - Used for MPLS labeled data packet forwarding
- MPLS Applications:
 - Layer-3 VPNs, Layer-2 VPNs, Traffic Engineering (TE)
Forwarding Plane v.s. Control Plane

- **Traditional routing/switching platforms**
 - Software-based control and forwarding plane
- **Next-generation routing/switching platforms**
 - Separate control and forwarding plane
 - Control plane resides on Route Processors (RPs)
 - Forwarding plane resides on Line Cards (LCs)
- **Certain failures confined to control plane**
 - Hardware failure on active RP
 - Software failure on active RP
High Availability (HA)

- End-to-end protection against network failures
- High Availability focused on maximizing network uptime and minimize effects of planned and unplanned network outages
 - Preserve end-to-end network service connectivity
- For network high availability, disruption in forwarding plane must be kept to an absolute minimum
 - Isolate control plane failures from forwarding plane
- Separation of control and forwarding plane should allow forwarding to continue while control plane recovers (NSF)
HA Mechanisms

• Component and Device Level Resiliency
 – Hardware and software component resiliency
 • Distributed line cards, route processors, Modular operating software
 – Stateful Switch-Over between RPs (SSO)
 – Control/forwarding plane decoupling; Non-Stop Forwarding (NSF)

• Network Level Resiliency
 – Optimized convergence algorithms, speeding up network recovery
 – Intelligent protocol fabric with network-wide forwarding awareness

• Operations and management
 – Embedded event management for proactive maintenance
 – Embedded, lightweight measurements of availability metrics
 – In-service software upgrades (ISSU)
NSF With SSO

- **Non-Stop Forwarding (NSF):** minimal or no packet loss
 - Packet forwarding continues during reestablishment of peering relationships
 - No route flaps between participating neighbor routers

- **Stateful Switch-Over (SSO):** zero interruption to protocol sessions
 - Active RP synchronizes information with standby RP
 - Session state maintained for high availability-aware protocols on standby RP
 - Standby RP takes control when active RP is compromised
MPLS HA – Component Resiliency

• MPLS High Availability features extend NSF with SSO capabilities for:
 – MPLS Forwarding
 – Label distribution protocol (LDP)
 – Layer-3 Virtual Private Networks (MP-iBGP)
 – Traffic Engineering (TE)
 – AToM and L2VPNs

• Minimal disruption to MPLS forwarding plane due to route processor control plane failures
 – Includes MPLS control plane failures (LDP, BGP, RSVP)
MPLS HA – Network Resiliency

- MPLS control plane protocol enhancements to improve failure detection time and network convergence
- Graceful Restart (GR)
 - LDP, MP-BGP
- Fast Convergence
 - LDP (IGP sync), MP-BGP
- TE FRR
 - Link protection
 - Node protection
MPLS Graceful Restart (GR)

- LDP and BGP use TCP as a reliable transport mechanism for exchange of protocol messages.
- TCP session between LDP/BGP peers may go down due to a RP switchover or HW/SW failures.
- On detection of TCP session failure (if HW/SW failure), existing LDP and BGP control plane components would remove their forwarding state.
- Graceful Restart mechanism enables continuous MPLS traffic forwarding during MPLS Control Plane failure and recovery.
 - Temporary use of old MPLS forwarding information until refresh of forwarding entries.
MPLS Graceful Restart + NSF/SSO

No MPLS HA support

MPLS HA Support: NSF/SSO + Graceful Restart
Fast Convergence: LDP-IGP Sync

- LDP maintains MPLS label database (LIB), which is linked to the routing database maintained by IGP (e.g., OSPF)
 - LIB content used by LDP to write MPLS forwarding (LFIB)
- LDP and IGP operation loosely coupled
 - Separate independent synchronization mechanisms for exchange of IGP routes and LDP label information (between IGP and LDP peers, resp.)
- Mismatch between IGP routing database and LDP label/forwarding database can potentially lead to MPLS packet loss
 - E.g.; IGP on link re-converges before LDP completes label exchange and LFIB updates, resulting into missing label forwarding (LFIB) entries
- LDP-IGP synchronization aimed to minimize potential MPLS packet loss as a result of mismatch between IGP and LDP
 - IGP instructed to delay (via hold timer) bringing up IGP adjacency on primary link
 - IGP instructed to advertise max-metric for link (resulting in possible upstream re-routing)
MPLS TE Fast Re-Route (FRR)

- IP routing protocols (e.g., OSPF, BGP) may be tuned to convergence within a few seconds
- Some traffic (e.g. voice) will require more aggressive convergence time
 - Typically 50 ms or less
- MPLS TE FRR offers protection against network failures
 - Link protection
 - Node protection
FRR Link Protection

- Creation of Next-hop Backup Tunnel
 - Parallel path around protected link to next hop
- On link failure detection Point of Local Repair (PLR) swaps label and pushes backup label
 - Traffic sent over backup path
- PLR notifies TE Head End (HE), which triggers global TE path re-optimization
FRR Node Protection

- Creation of Next-next-hop Backup Tunnel
 - Parallel path around protected node to next-next-hop
- Node failure triggers Point of Local Repair (PLR) to swap label and push backup label
 - Traffic sent over backup path around failed node
- PLR notifies TE Head End (HE), which triggers global TE path re-optimization
HA in MPLS Network Infrastructure

HA Aware Devices
- Graceful Restart Functionality for all related control protocols on CE, P (core), and Route Reflectors (RRs)

HA Capable Devices
- Full NSF/SSO functionality on PE nodes (PE1 and PE2)

Graceful Restart Functionality for all related control protocols on CE, P (core), and Route Reflectors (RRs)

HA Aware Devices
- GR eBGP, RIP, OSPF,...etc

HA Capable Devices
- Full NSF/SSO functionality on PE nodes (PE1 and PE2)

© 2005 Cisco Systems, Inc. All rights reserved.
Conclusions

• High Availability focused on maximizing network uptime and minimize effects of planned and unplanned network outages

• MPLS HA functional areas include Component and Device Level Resiliency, Network Level Resiliency, and Operations and management

• MPLS HA focused on separation of control and forwarding plane to allow forwarding to continue during control plane failures and recovery

• Network and layer-2/3 service convergence are driving need for High Availability in Service Provider MPLS networks
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>Asynchronous Transfer Mode</td>
</tr>
<tr>
<td>AToM</td>
<td>Any Transport over MPLS</td>
</tr>
<tr>
<td>BGP</td>
<td>Border Gateway Protocol</td>
</tr>
<tr>
<td>FRR</td>
<td>Fast Re-Route</td>
</tr>
<tr>
<td>GR</td>
<td>Graceful Restart</td>
</tr>
<tr>
<td>HA</td>
<td>High Availability</td>
</tr>
<tr>
<td>HE</td>
<td>Head End (for TE path)</td>
</tr>
<tr>
<td>HW</td>
<td>Hardware</td>
</tr>
<tr>
<td>IGP</td>
<td>Interior Gateway Protocol</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>ISSU</td>
<td>In-Service Software Upgrade</td>
</tr>
<tr>
<td>LC</td>
<td>Line Card</td>
</tr>
<tr>
<td>LDP</td>
<td>Label Distribution Protocol</td>
</tr>
<tr>
<td>LSP</td>
<td>Label Switched Path</td>
</tr>
<tr>
<td>LIB</td>
<td>Label Information Base</td>
</tr>
<tr>
<td>LFIB</td>
<td>Label Forwarding Information Base</td>
</tr>
<tr>
<td>MPLS</td>
<td>Multi-Protocol Label Switching</td>
</tr>
<tr>
<td>MP-iBGP</td>
<td>Multi-Protocol Interior BGP</td>
</tr>
<tr>
<td>NSF</td>
<td>Non-Stop Forwarding</td>
</tr>
<tr>
<td>PLR</td>
<td>Point of Local Repair</td>
</tr>
<tr>
<td>RP</td>
<td>Route Processor</td>
</tr>
<tr>
<td>RSVP</td>
<td>Resource Reservation Protocol</td>
</tr>
<tr>
<td>SW</td>
<td>Software</td>
</tr>
<tr>
<td>SSO</td>
<td>Stateful Switch-Over</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>TE</td>
<td>Traffic Engineering</td>
</tr>
<tr>
<td>VPN</td>
<td>Virtual Private Network</td>
</tr>
</tbody>
</table>